
© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 41

Empirical Research in Object Oriented Software

Metrics Threshold Values At Acceptable Risk

Level

Sarabjit Kaur Kamaljeet Singh

Assistant Professor Assistant Professor

Dept. of CSE Dept. of FCS

CTITR, Maqsudan.Jalandhar(Punjab) GNA University, Phagwara(Punjab)

Abstract
For the software engineers, Object-Oriented

metrics are more beneficial. Object-oriented

design and development is becoming very popular

in software development environment. Object

oriented development requires not only a different

approach to design and implementation, it requires

a different approach to software metrics. In the

current paper, we use logistic regression to

investigate the threshold values against the bad

smell for the Chidamber and Kemerer(CK)

metrics at five different levels. Two versions of

jfreechart were used as a dataset to validate the

study. Only the significantly associated metrics

were considered for finding the threshold values.

In this study, accuracy of both the versions 4 gives

more than 70% results for the selected metrics:

LOC, WMC, RFC, CBO and DIT.

Keywords
Object-oriented metrics, Threshold values, Risk

levels, open source software.

I. INTRODUCTION

Software quality has been a major challenge in

various software projects since years. The quality

of software can be evaluated using different types

of software metrics. Although it has always been

the major concern in software development but

still lacks the outline of standards which can

measure it [2]. As quality is effected by

maintainability, in order to

achieve it one needs to know what characteristics

of a product actually affects it. In their work, has

emphasized the factors that decrease maintenance

effort. These are use of structured techniques, Use

of modern software, Use of automated tools, Use

of data-base techniques, Good data administration,

and experienced maintainers. Modification of a

software product after delivery to correct faults, to

improve performance or other attributes, or to

adapt the product to a modified environment.

Basically, this means that any activity that

modifies software product after its release is

software maintenance. Adaptive maintenance is

the modification of a software product performed

after delivery to keep a computer program usable

in a changed or changing environment. Corrective

maintenance is the reactive modification of a

software product performed after delivery to

correct discovered faults. Perfective maintenance

is the modification of a software product after

delivery to improve performance or

maintainability [7]. Fowler and Beck have

informally described bad smells in code as bad or

inconsistent parts of the design of an Object-

oriented System. Flower has identified 22 code

smells and associated each of them with the

refactoring transformations that may be applied to

improve the structure of code [3]. Refactoring

increases the code readability and maintainability.

Refactoring applied at any level depends on the

type of design defect found in the system and has

a direct influence on the software maintenance

cost [6].

 The process of refactoring is applied in three

different stages which are identification of

problematic area, choice of appropriate refactoring

technique and application of refactoring

techniques. The object-oriented software metrics

were investigated and the most suitable metrics is

evaluated. The metrics were selected on the basis

of their ability to predict different aspects of

object-oriented design. Then, tool was used to

measure the metric quality. An adequate result

means the code base must consist of both well and

badly designed systems. The logistic regression is

used to investigate the threshold effects of the CK

metrics suite, and then validate the thresholds to

identify faulty classes. This model is used to find

the threshold effects in Eclipse 2.0. [5]. In this

research, the aim is to find the threshold values of

object oriented metrics based on the bad smell.

Then the validation of these metrics threshold

values will be done. Only the significantly

associated metrics were considered for finding the

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 42

threshold values. The need is to find the threshold

values of metrics using bad smell successfully and

then validate this threshold values will be done.

2. LITERATURE REVIEW

In this section, we review the previous works that

are related to the validation and threshold effects

of Object-Oriented metrics. Shatnawi [14]. In this

paper, we use a statistical model, derived from the

logistic regression, to identify threshold values for

the Chidamber and Kemerer (CK) metrics. The

methodology is validated empirically on a large

open-source system—the Eclipse project. The

empirical results indicate that the CK metrics have

threshold effects at various risk levels and

validated the use of these thresholds on the next

release of the Eclipse project—Version 2.1—

using decision trees. In addition, the selected

threshold values were more accurate than those

were selected based on either intuitive

perspectives or on data distribution parameter [5].

Bad smells are used as a means to identify

problematic classes in object-oriented systems for

refactoring. Although there is a plethora of

empirical studies linking software metrics to

errors and error proneness of classes in object-

oriented systems, the link between the bad smells

and class error probability in the evolution of

object-oriented systems after the systems are

released has not been explored. There has been no

empirical evidence linking the bad smells with

class error probability so far. This paper presents

the results from an empirical study that

investigated the relationship between the bad

smells and class error probability in three error-

severity levels in an industrial-strength open

source system. The research, which was

conducted in the context of the post-release

system evolution process, showed that some bad

smells were positively associated with the class

error probability in the three error-severity levels.

This finding supports the use of bad smells as a

systematic method to identify and refactor

problematic classes in this specific context.

Rosenberg[4] identified the Object oriented

technology uses objects and not algorithms as its

fundamental building blocks, the approach to

software metrics for object oriented programs

must be different from the standard metrics set.

Some metrics, such as lines of code and

cyclomatic complexity, have become accepted as

"standard" for traditional functional/ procedural

programs, but for object oriented, there are many

proposed object oriented metrics in the literature.

The question is, "Which object oriented metrics

should a project use, and can any of the traditional

metrics be adapted to the object oriented

environment?" Basili et al.(1996) presented the

results of a study in which we empirically

investigated the suite of object-oriented (OO)

design metrics introduced. More specifically, our

goal is to assess these metrics as predictors of

fault-prone classes and, therefore, determine

whether they can be used as early quality

indicators. This study is complementary to the

work described where the same suite of metrics

had been used to assess frequencies of

maintenance changes to classes. To perform our

validation accurately, we collected data on the

development of eight medium-sized information

management systems based on identical

requirements. All eight projects were developed

using a sequential life cycle model, a well-known

OO analysis/design method and the C++

programming language. Based on empirical and

quantitative analysis, the advantages and

drawbacks of these OO metrics are discussed.

Several of Chidamber and Kemerer's OO metrics

appear to be useful to predict class fault-proneness

during the early phases of the life-cycle. Also, on

the data set, they are better predictors than

"traditional" code metrics, which can only be

collected at a later phase of the software

development processes. Bender[10] described the

method for quantitative risk assessment in

epidemiological studies investigating threshold

effects is proposed. The simple logistic regression

model is used to describe the association between

a binary response variable and a continuous risk

factor. By defining acceptable levels for the

absolute risk and the risk gradient the

corresponding benchmark values of the risk factor

can be calculated by means of nonlinear functions

of the logistic regression coefficients. Standard

errors and confidence intervals of the benchmark

values are derived by means of the multivariate

delta method. The proposed approach is compared

with the threshold model of ULM (1991) for

assessing threshold values in epidemiological

studies. Gyimothy et al. (2005) found significant

association between some of the CK metrics and

the fault-proneness of classes, expect for the NOC

metrics.[19] Rosenberg suggested a set of

threshold values for the CK metrics that can be

used to select classes for inspection or redesign[4].

Bender [10] pointed out that the estimated

threshold values should only be considered

suitable if the assumption of the regression model,

(i.e., a constant risk below the threshold) is

plausible. Bender redefined the threshold effects

as an acceptable risk level. Thus far, there is no

consensus on the threshold values for software

metrics, and perhaps not even for what are the best

methods to use in the search for the threshold

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 43

effects. In this research we assess the use of a

quantitative methodology that was proposed to

find the threshold effects, which are redefined as

the acceptable risk level.

3. RESEARCH METHOD

In this section, we introduce the research

methodology in which first, to find the threshold

values of object-oriented metrics based on the bad

smell.Two version (1.0.0 pre1 and 1.0.1) of

jfreechart were taken for anaylsis. First, we

collected the CK metrics and badsmell databases

of these two versions of jfreechart from Analyst4j

tool. .The objective is to use the logistic regression

to investigate the threshold effects of the CK

metrics. Only the significantly associated metrics

were considered for finding the threshold values

using bad smell at various risk level.

3.1 Software Measurements

We have selected the CK metrics as evidenced by

previous empirical studies. The CK metrics are

defined as follows:-

Coupling between Object (CBO) metric counts the

number of classes to which it is coupled Line of

Code (LOC) is calculated as the sum of no. of

fields, the no. of nodes and the no. of instructions

in a given class. Response for Class (RFC) is the

count of set of all the methods that can be invoked

in response to a message to an object of a class.

Weighted Method Complexity (WMC) metric is

the sum of all the complexities of all the methods

in a class. Lack of cohesion of methods (LCOM)

measure the dissimilarity of methods in a class.

Depth of inheritance (DIT) is the maximum no. of

steps from the class node to the root of the tree.

3.2 Bad Smell Measurements

Identify bad smells in code helps to refactor the

code. Refactoring of software code is a very

tedious problem and applying it manually is yet

more difficult. A number of surveys have been

done for refactoring and maintainability. There is

a need of external attributes to refactor the code

for better understandability. Metrics provide solid

information regarding object oriented properties.

Research results show the relationship between

structural attributes and external quality metrics.

In this paper we find five different bad smell

categories in which different bad smells are

identified and refractor to ensure maintainability.

Table1 shows the different bad smell

categorizations which contain various bad smells

in it.

4. ANALYSIS METHODS

The method that we use to perform this analysis is

based upon the Logistic regression model. The

logistic regression is used to validate the metrics

and to calculate the threshold values.

4.1 Univariate Binary Logistic Regression

 Analysis

In the Univariate Binary Logistic Regression

(UBR) Analysis significant metrics for predicting

bad smell were selected. Analysis was done at the

95 percent confidence level (P-value < 0.05). In

the Univariate Binary Logistic Regression (UBR)

Analysis significant metrics for predicting bad

smell were selected.

Table 1. Bad Smell Categorization

SNo

.

Bad Smell

Category

Bad Smells

1. Blob Class Large Objects

 Large Attributes

 Long Methods

 Large Class

 Long Parameter

List

2. Undocumen

ted Code
 No proper

Documentation

 Comments

3. Using

Inheritance
 Parallel Inheritance

Hierarchies

 Feature Envy

4. Procedure

oriented

Design

 Switch Statements

 Alternative classes

with different

interfaces

5. Complex

Class
 Duplicate Code

 Data Class

Analysis was done at the 95 percent confidence

level(P-value < 0.05).If the metrics has p-value

greater than 0.05 then it is neglected, it means that

we can’t calculate the threshold values for the next

step. Table 2. shows the significance levels(p-

values) for the Univariate Logistic Regression for

the CK metrics of two versions of jfreechart.

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 44

Table 2. Univariate Binary Regression Analysis

Metrics

jfreechart(1.0.0

pre1)

jfreechart(1.0.1)

B p-

value

B p-value

LOC .009 .000 0.008 .000

WMC .034 .000 0.46 .000

RFC .025 .000 0.027 .000

LCOM N/A N/A N/A N/A

CBO .249 .000 0.207 .000

DIT 1.128 .000 0.703 .000

It was notice from the UBR analysis that the LOC,

WMC, RFC, CBO and DIT metrics are significant

predictors of the bad smell between classes at the 95

% confidence level (P < 0.05). That’s why, we

calculate the threshold values only for these metrics.

Analyst4j data set does not allow identifying the

threshold values for it.

4.2 Threshold Effects Analysis

The threshold values are calculated with the help of

Value of Acceptable Risk Level (VARL) using

equation (1).Only above mention metrics are

calculated with this formula. Table 3 shows the

threshold values of selected metrics at different five

risk levels (0.5, 0.55, 0.6, 0.65, 0.7) of two different

versions of jfreechart.

 VARL= p ֿ ¹ ﴾po (= 1/β ﴾ log (po/1-po) –α)

 Equation (1)

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 45

Table 3. VARL Threshold Values

Table 4. VARL Threshold Values

The Threshold values of selected metrics are given

with the VARL formula, in which α and β are the

coefficient estimates

and the probability po is suggested with different

five risk levels i.e. (po = 0.5 to po = 0.7). Table 3

and Table 4 represent the Threshold values with

equation 1 based on bad smell at different five risk

levels. Result shows some metrics have effective

threshold values for the metrics.

4.3 Assessing Threshold Effectiveness

Accuracy of each software metrics was calculated

with the help of confusion matrix at five risk

levels. It is observed that some metrics gives the

proper accuracy at five risk levels. Actually, it

depends on the

threshold

values of

selected

software

metrics. Both

the versions of

jfreechart

packages gave

the different

accuracy at different risk levels. It is observed that

highest accuracy is at po = 0.55 risk level which

was above 70% at this risk levels.

Table 5. Accuracy for jfreechart version

METRICS

Po=0.5

Po = 0.55

Po = 0.6

Po = 0.65

Po = 0.7

LOC

-

77.3

73.7

69.5

69.5

WMC

-

77.3

75.5

69.5

69.5

RFC

-

77.7

76.1

69.5

69.5

DIT

75.3

75.3

75.3

69.5

69.5

CBO

78.5

77.3

76.7

75.1

74.1

METRIC β α

VARL VARL VARL VARL VARL

(po =0.50) (po =0.55) (po =0.60) (po =0.65) (po=0.70)

LOC 0.009 -0.003 0 23 45 69 94

WMC 0.034 0.246 -7 -1 5 11 18

RFC 0.025 0.036 -1 7 15 23 32

DIT 1.128 -0.696 1 1 1 1 1

CBO 0.249 -0.733 3 4 5 5 6

METRIC β α

VARL VARL VARL VARL VARL

(po =0.50) (po =0.55) (po =0.60) (po =0.65) (po=0.70)

LOC 0.008 -0.025 3 28 54 81 109

WMC 0.047 0.177 -4 1 5 9 14

RFC 0.027 0.018 -1 7 14 22 31

DIT 0.72 -0.153 0 0 1 1 1

CBO 0.208 -0.669 3 4 5 6 7

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 46

Table 6. Accuracy for jfreechart version (1.0.0 to 1.0.1)

METRICS

Po=0.5

Po = 0.55

Po = 0.6

Po = 0.65

Po = 0.7

LOC

-

75.6

68.5

67.9

67.9

WMC

-

77.7

72.3

67.9

67.9

RFC

-

77.3

74.4

67.9

67.9

DIT

75.4

75.4

75.4

67.9

67.9

CBO

80

79.6

77.5

75.8

74.8

Table 7. Accuracy for jfreechart package

S.No. Metrics P0 = 0.55 VARL Threshold values

1.

LOC

75.6

28

2.

WMC

77.7

1

3.

RFC

77.3

7

4.

DIT

75.4

1

5.

CBO

79.6

4

The confusion matrix can be used to select the

best results among the different risk levels. The

Thresholds for po = 0.55 shows the best accuracy

values. Therefore, we consider the threshold

values for po = 0.55 as the most effective. These

threshold values are LOC = 28, WMC= 1, RFC =

7, DIT = 0 and CBO = 4. The LOC, WMC, RFC

and CBO metrics shows the best among the five

metrics. Only DIT metrics gives the less accuracy

as compared to other selected metrics. However,

each of these metrics serves a different purpose

for both developers and testers of a software

system. The CBO metric can be used to identify

the classes that are excessively coupled to other

classes, and the RFC metric can be used to

identify the classes that have large responsibilities,

whereas the WMC metric can be used to identify

the classes that have excessive complexity. In

general, a class with significantly more methods

than its peers is more complex, tends to be more

application-specific, and often hosts a greater

number of bad smells present in the class.

To get insight into the accuracy of two version of

jfreechart package. Accuracy of two versions was

calculated and it is observed that some metrics

gives the highest accuracy at different risk levels.

Then, apply one version to another version to

predict the accuracy of each software metrics and

after comparing the result, it is observed that

accuracy after applying one version to another

version also gave highest accuracy at the same

risk level which is more than 70%. Therefore, the

prediction accuracy can be improved if these

thresholds are applied of one version to another

version.

Accuracy Evaluation

We need to check the accuracy or effectiveness of

the above selected metrics values. Accuracy of

each software metrics was calculated with the help

of confusion matrix at five risk levels of two

versions of jfreechart. It is observed that some

metrics gives the proper accuracy at five risk

levels. Actually, it depends on the threshold values

of selected software metrics. Both the versions of

jfreechart packages give the different accuracy at

different risk levels. The confusion matrix can be

used to select the best results among the five risk

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 47

levels. This matrix can be used to calculate the

percentage of each selected metrics and also the

confusion matrix gave the observed and predicted

values through which it is easy to calculate the

accuracy. The percentage accuracy can be

calculated at each five different risk levels. It is

observed that accuracy can be calculated only at

some risk levels of selected software metrics. It

can be observed from the figure 6.1 that only CBO

and DIT metrics are calculated at all five different

risk levels whereas WMC,LOC and RFC metrics

can’t gave any accuracy at level po=0.5 but these

metrics gave good accuracy at other four risk

levels. The accuracy values of version (1.0.1) of

selected metrics are summarized in Fig.6.1. It was

observed that accuracy of this jfreechart version of

selected threshold metrics gave good result and

also highest accuracy at the po = 0.55 level that

are more than 70% for all the selected metrics.

Some metrics did not give accurate value at

particular risk levels. But on the other hand,

selected metrics gave the highest accuracy at five

risk levels.

Accuracy Evaluation for other version

The accuracy values of version (1.0.0) of selected

metrics are summarized in Fig. It was observed

that accuracy of this jfreechart version of selected

threshold metrics gave good result and also

highest accuracy at the po = 0.55 level that are

more than 70% for all the selected metrics. Some

metrics did not give accurate value at particular

risk levels. But on the other hand, selected metrics

gave the highest accuracy at five risk levels.

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 48

Accuracy for jfreechart 1.0.0 for LOC Metric at different risk

levels
80

78

76

74

72

70

68

66

64
Po = 0.55 Po = 0.6 Po = 0.65 Po = 0.7

LOC Metric

Accuracy for jfreechart 1.0.0 for WMC Metric at different risk

levels
80

78

76

74

72

70

68

66

64
Po = 0.55 Po = 0.6 Po = 0.65 Po = 0.7

WMC Metric

Accuracy for jfreechart 1.0.0 for RFC Metric at different risk levels

80

78

76

74

72

70

68

66

64 Po = 0.55 Po = 0.6 Po = 0.65 Po = 0.7

RFC Metric

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 49

Figure 1. The Accuracy for jfreechart version 1.0.0 at different risk levels for metrics (a) LOC (b) WMC (c) ROC and (d) DIT

Accuracy for jfreechart 1.0.0 for DIT Metric at different risk levels

80

78

76

74

72

70

68

66

64
Po=0.5 Po = 0.55 Po = 0.6

DIT

Metric

Po = 0.65 Po = 0.7

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 50

Accuracy for jfreechart version 1.0.0 to 1.0.1 for LOC Metric at

different risk levels

78

76

74

72

70

68

66

64 Po = 0.55 Po = 0.6 Po = 0.65 Po = 0.7

LOC Metric

Accuracy for jfreechart version 1.0.0 to 1.0.1 for WMC Metric at

different risk levels

80

78

76

74

72

70

68

66

64

62

Po = 0.55 Po = 0.6 Po = 0.65 Po = 0.7

WMC Metric

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 51

 Figure 2. The Accuracy for jfreechart version 1.0.0 to 1.0.1 at different risk levels for metrics (a) LOC (b) WMC (c)

 ROC (d) DIT

Accuracy on other releases of jfreechart

As our goal is to predict bad smell in the

successive releases of the system, one version is

applied on other version to predict the bad smell

and compare the accuracy of both the versions. It

is observed that accuracy gave satisfactory result.

In this study, accuracy of both the versions give

more than 70% results and it was also observed

that when one version applied on the other version

then also, accuracy more than 70% at po = 0.55 for

the selected metrics: LOC, WMC, RFC, CBO and

DIT

Accuracy for jfreechart version 1.0.0 to 1.0.1 for RFC Metric at

different risk levels

80

78

76

74

72

70

68

66

64

62

Po = 0.55 Po = 0.6 Po = 0.65

RFC Metric

Po = 0.7

Accuracy for jfreechart version 1.0.0 to 1.0.1 for DIT Metric at

different risk levels

76

74

72

70

68

66

64

Po=0.5 Po = 0.55 Po = 0.6

DIT

Metric

Po = 0.65 Po = 0.7

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 52

CONCLUSION AND FUTURE WORK

Object-Oriented metrics are more beneficial for

the software engineers. Threshold values also

provide the meaning to the OO metrics and to

identify the various classes at risk. In this work,

we find the threshold values of Object-Oriented

metrics based on bad smell by using Logistic

Regression model. It was concluded that these

threshold values also

helps to improve the software quality because

classes having more than threshold values will

increase the testing efficiency. It was observed

that accuracy of jfreechart version of selected

threshold metrics gave good result and also

highest accuracy at the po = 0.55 level that are

more than 70% for all the selected metrics: LOC,

WMC, RFC, CBO and DIT. We found that there

are effective threshold values for the selected

metrics. At different risk level, we found different

effects for the given metrics.

Acknowledgments: The authors would like to

thank Dr. Satwinder Singh for his valuable

suggestions and support on this paper.

References

[1] Abreau. F. and Melo. (1996). Evaluating the

impact of object oriented design on software

quality, Proc. 3rd International Software metrics

Symposium (Metrics96), IEEE, Berlin, Germany.

[2] Coleman. D, Ash.D, Lowther. B and Oman.

P.W. (1994). Using metrics to evaluate software

system maintainability, IEEE Computing

Practices, vol. 27, (pp. 44-49)

 [3] Fowler and Martin.(2000). Refactoring:

Improving the Design of Existing Code Addison-

Wisely.

[4] Rosenberg L.H.(1998). Applying and

Interpreting Object Oriented Metrics Applying

and Interpreting Object Oriented Metrics, Proc.

Software Technology Conf.

[5] Shatnawi. R.(2007). An empirical study of the

bad smells and class error probability in the post-

release object-oriented system evolution, Journal

of Systems and Software, vol. 80 no. 7, (pp.1120-

1128).

[6] Munro. M. (2005). Product Metrics for

Automatic Identification of "Bad Smell" Design

Problems in Java Source-Code, in 'METRICS '05,

Proceedings of the 11th IEEE International

Software Metrics Symposium.

[7] Mantyala. M. (2003). Bad Smells in Software-

a Taxonomy and an empirical Study, PhD Thesis,

Helsinki University of Technology.

 [8] Briand. L, Daly. J, and Wust. J. (1999). A

Unified Framework for Coupling Measurement in

Object-Oriented Systems, IEEE Trans. Software

Eng., vol. 25, no. 1, (pp. 91-121).

[9] Shatnawi. R. (2010). A Quantitative

Investigation of the Acceptable Risk Levels of

Object-Oriented Metrics in Open-Source Systems,

IEEE Transactions Software Engineering, vol.

36, no. 2,(pp. 216-225).

[10] Bender. R. (1999). Quantitative Risk

Assessment in Epidemiological Studies

Investigating Threshold Effects, Biometrical

Journal, vol. 41, no. 3,(pp. 305-319).

[11] Gyimothy. T, Ferenc. R, and Siket. I. (2005)

Empirical Validation of Object-Oriented Metrics

on Open Source Software for Fault Prediction,

IEEE Transactions On Software Engineering, vol.

31, pp. (10-19)

[12] Basili. V, Briand.L, and Melo. W.(1996). A

Validation of Object- Oriented Design Metrics as

Quality Indicators, IEEE Trans. Software Eng.,

vol. 22, no. 10, (pp. 751-761).

 [13]. Shatnawi, R. and Althebyan, Q. (2013). An

Empirical Study of the Effect of Power Law

Distribution on the Interpretation of OO Metrics,

Hindawi Publishing Corporation ISRN Software

Engineering, (pp. 18).

 [14]. Shatnawi, R. (2010). A Quantitative

Investigation of the Acceptable Risk Levels of

Object- Oriented Metrics in Open-Source Systems,

IEEE Transactions on Software Engineering, Vol.

36, No. 2, (pp. 216-225).

http://www.jetir.org/

