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Abstract 
For the software engineers, Object-Oriented 

metrics are more beneficial. Object-oriented 

design and development is becoming very popular 

in software development environment. Object 

oriented development requires not only a different 

approach to design and implementation, it requires 

a different approach to software metrics. In the 

current paper, we use logistic regression to 

investigate the threshold values against the bad 

smell for the Chidamber and Kemerer(CK) 

metrics at five different levels. Two versions of 

jfreechart were used as a dataset to validate the 

study. Only the significantly associated metrics 

were considered for finding the threshold values. 

In this study, accuracy of both the versions 4 gives 

more than 70% results for the selected metrics: 

LOC, WMC, RFC, CBO and DIT. 
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I.    INTRODUCTION 
 

Software quality has been a major challenge in 

various software projects since years. The quality 

of software can be evaluated using different types 

of software metrics. Although it has always been 

the major concern in software development but 

still lacks the outline of standards which can 

measure it [2]. As quality is effected by 

maintainability, in order to  

 

 

achieve it one needs to know what characteristics 

of a product actually affects it. In their work, has 

emphasized the factors that decrease maintenance 

effort. These are use of structured techniques, Use 

of modern software, Use of automated tools, Use 

of data-base techniques, Good data administration, 

and experienced maintainers. Modification of a 

software product after delivery to correct faults, to 

improve performance or other attributes, or to 

adapt the product to a modified environment. 

Basically, this means that any activity that 

modifies software product after its release is 

software maintenance. Adaptive maintenance is 

the modification of a software product performed 

after delivery to keep a computer program usable 

in a changed or changing environment. Corrective 

maintenance is the reactive modification of a 

software product performed after delivery to 

correct discovered faults. Perfective maintenance 

is the modification of a software product after 

delivery to improve performance or 

maintainability [7]. Fowler and Beck have 

informally described bad smells in code as bad or 

inconsistent parts of the design of an Object-

oriented System. Flower has identified 22 code 

smells and associated each of them with the 

refactoring transformations that may be applied to 

improve the structure of code [3]. Refactoring 

increases the code readability and maintainability. 

Refactoring applied at any level depends on the 

type of design defect found in the system and has 

a direct influence on the software maintenance 

cost [6]. 

 The process of refactoring is applied in three 

different stages which are identification of 

problematic area, choice of appropriate refactoring 

technique and application of refactoring 

techniques. The object-oriented software metrics 

were investigated and the most suitable metrics is 

evaluated. The metrics were selected on the basis 

of their ability to predict different aspects of 

object-oriented design. Then, tool was used to 

measure the metric quality. An adequate result 

means the code base must consist of both well and 

badly designed systems.  The logistic regression is 

used to investigate the threshold effects of the CK 

metrics suite, and then validate the thresholds to 

identify faulty classes. This model is used to find 

the threshold effects in Eclipse 2.0. [5]. In this 

research, the aim is to find the threshold values of 

object oriented metrics based on the bad smell. 

Then the validation of these metrics threshold 

values will be done. Only the significantly 

associated metrics were considered for finding the 
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threshold values. The need is to find the threshold 

values of metrics using bad smell successfully and 

then validate this threshold values will be done. 

 

2. LITERATURE REVIEW 

 
In this section, we review the previous works that 

are related to the validation and threshold effects 

of Object-Oriented metrics. Shatnawi [14]. In this 

paper, we use a statistical model, derived from the 

logistic regression, to identify threshold values for 

the Chidamber and Kemerer (CK) metrics. The 

methodology is validated empirically on a large 

open-source system—the Eclipse project. The 

empirical results indicate that the CK metrics have 

threshold effects at various risk levels and 

validated the use of these thresholds on the next 

release of the Eclipse project—Version 2.1—

using decision trees. In addition, the selected 

threshold values were more accurate than those 

were selected based on either intuitive 

perspectives or on data distribution parameter [5]. 

Bad smells are used as a means to identify 

problematic classes in object-oriented systems for 

refactoring. Although there is a plethora of 

empirical studies linking software metrics to 

errors and error proneness of classes in object-

oriented systems, the link between the bad smells 

and class error probability in the evolution of 

object-oriented systems after the systems are 

released has not been explored. There has been no 

empirical evidence linking the bad smells with 

class error probability so far. This paper presents 

the results from an empirical study that 

investigated the relationship between the bad 

smells and class error probability in three error-

severity levels in an industrial-strength open 

source system. The research, which was 

conducted in the context of the post-release 

system evolution process, showed that some bad 

smells were positively associated with the class 

error probability in the three error-severity levels. 

This finding supports the use of bad smells as a 

systematic method to identify and refactor 

problematic classes in this specific context. 

Rosenberg[4] identified the Object oriented 

technology uses objects and not algorithms as its 

fundamental building blocks, the approach to 

software metrics for object oriented programs 

must be different from the standard metrics set. 

Some metrics, such as lines of code and 

cyclomatic complexity, have become accepted as 

"standard" for traditional functional/ procedural 

programs, but for object oriented, there are many 

proposed object oriented metrics in the literature. 

The question is, "Which object oriented metrics 

should a project use, and can any of the traditional 

metrics be adapted to the object oriented 

environment?" Basili et al.(1996) presented the 

results of a study in which we empirically 

investigated the suite of object-oriented (OO) 

design metrics introduced. More specifically, our 

goal is to assess these metrics as predictors of 

fault-prone classes and, therefore, determine 

whether they can be used as early quality 

indicators. This study is complementary to the 

work described where the same suite of metrics 

had been used to assess frequencies of 

maintenance changes to classes. To perform our 

validation accurately, we collected data on the 

development of eight medium-sized information 

management systems based on identical 

requirements. All eight projects were developed 

using a sequential life cycle model, a well-known 

OO analysis/design method and the C++ 

programming language. Based on empirical and 

quantitative analysis, the advantages and 

drawbacks of these OO metrics are discussed. 

Several of Chidamber and Kemerer's OO metrics 

appear to be useful to predict class fault-proneness 

during the early phases of the life-cycle. Also, on 

the data set, they are better predictors than 

"traditional" code metrics, which can only be 

collected at a later phase of the software 

development processes. Bender[10] described the  

method for quantitative risk assessment in 

epidemiological studies investigating threshold 

effects is proposed. The simple logistic regression 

model is used to describe the association between 

a binary response variable and a continuous risk 

factor. By defining acceptable levels for the 

absolute risk and the risk gradient the 

corresponding benchmark values of the risk factor 

can be calculated by means of nonlinear functions 

of the logistic regression coefficients. Standard 

errors and confidence intervals of the benchmark 

values are derived by means of the multivariate 

delta method. The proposed approach is compared 

with the threshold model of ULM (1991) for 

assessing threshold values in epidemiological 

studies. Gyimothy et al. (2005) found significant 

association between some of the CK metrics  and 

the fault-proneness of classes, expect for the NOC 

metrics.[19] Rosenberg suggested a set of 

threshold values for the CK metrics that can be 

used to select classes for inspection or redesign[4]. 

Bender [10] pointed out that the estimated 

threshold values should only be considered 

suitable if the assumption of the regression model, 

(i.e., a constant risk below the threshold) is 

plausible. Bender redefined the threshold effects 

as an acceptable risk level. Thus far, there is no 

consensus on the threshold values for software 

metrics, and perhaps not even for what are the best 

methods to use in the search for the threshold 

http://www.jetir.org/


© 2020 JETIR May 2020, Volume 7, Issue 5                                                             www.jetir.org (ISSN-2349-5162) 

JETIR2005008 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 43 
 

effects. In this research we assess the use of a 

quantitative methodology that was proposed to 

find the threshold effects, which are redefined as 

the acceptable risk level. 

 

3. RESEARCH METHOD 
 

In this section, we introduce the research 

methodology in which first, to find the threshold 

values of object-oriented metrics based on the bad 

smell.Two version (1.0.0 pre1 and 1.0.1) of 

jfreechart were taken for anaylsis. First, we 

collected the CK metrics and badsmell databases 

of these two versions of jfreechart from Analyst4j 

tool. .The objective is to use the logistic regression 

to investigate the threshold effects of the CK 

metrics. Only the significantly associated metrics 

were considered for finding the threshold values 

using bad smell at various risk level. 

 

3.1 Software Measurements 
 

We have selected the CK metrics as evidenced by 

previous empirical studies. The CK metrics are 

defined as follows:- 

Coupling between Object (CBO) metric counts the 

number of classes to which it is coupled Line of 

Code (LOC) is calculated as the sum of no. of 

fields, the no. of nodes and the no. of instructions 

in a given class. Response for Class (RFC) is the 

count of set of all the methods that can be invoked 

in response to a message to an object of a class. 

Weighted Method Complexity (WMC) metric is 

the sum of all the complexities of all the methods 

in a class. Lack of cohesion of methods (LCOM) 

measure the dissimilarity of methods in a class.  

Depth of inheritance (DIT) is the maximum no. of 

steps from the class node to the root of the tree. 

 

3.2 Bad Smell Measurements 

 
Identify bad smells in code helps to refactor the 

code. Refactoring of software code is a very 

tedious problem and applying it manually is yet 

more difficult. A number of surveys have been 

done for refactoring and maintainability. There is 

a need of external attributes to refactor the code 

for better understandability. Metrics provide solid 

information regarding object oriented properties. 

Research results show the relationship between 

structural attributes and external quality metrics. 

In this paper we find five different bad smell 

categories in which different bad smells are 

identified and refractor to ensure maintainability. 

Table1 shows the different bad smell 

categorizations which contain various bad smells 

in it.  

 

4. ANALYSIS METHODS 
 

The method that we use to perform this analysis is 

based upon the Logistic regression model. The 

logistic regression is used to validate the metrics 

and to calculate the threshold values. 

 

4.1 Univariate Binary Logistic Regression    

      Analysis 

 

In the Univariate Binary Logistic Regression 

(UBR) Analysis significant metrics for predicting 

bad smell were selected. Analysis was done at the 

95 percent confidence level (P-value < 0.05). In 

the Univariate Binary Logistic Regression (UBR) 

Analysis significant metrics for predicting bad 

smell were selected.    

 
 

 

 

Table 1. Bad Smell Categorization 

 

SNo

. 

Bad Smell 

Category 

Bad Smells 

1. Blob Class  Large Objects 

 Large Attributes 

 Long Methods 

 Large Class 

 Long Parameter 

List 

2. Undocumen

ted Code 
 No proper 

Documentation 

 Comments 

3. Using 

Inheritance 
 Parallel Inheritance 

Hierarchies 

 Feature Envy 

4.  Procedure 

oriented 

Design 

 Switch Statements 

 Alternative classes 

with different 

interfaces 

5.  Complex 

Class 
 Duplicate Code 

 Data Class 

 

Analysis was done at the 95 percent confidence 

level(P-value < 0.05).If the metrics has p-value 

greater than 0.05 then it is neglected, it means that 

we can’t calculate the threshold values for the next 

step. Table 2.  shows the significance levels(p-

values) for the Univariate Logistic Regression for 

the CK metrics of two versions of jfreechart. 
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Table 2. Univariate Binary  Regression Analysis 

 

Metrics 

jfreechart(1.0.0 

pre1) 

jfreechart(1.0.1) 

 

B p-

value 

B p-value 

LOC .009 .000 0.008 .000 

WMC .034 .000 0.46 .000 

RFC .025 .000 0.027 .000 

LCOM N/A N/A N/A N/A 

CBO .249 .000 0.207 .000 

DIT 1.128 .000 0.703 .000 

 

 

 

 

It was notice from the UBR analysis that the LOC, 

WMC, RFC, CBO and DIT metrics are significant 

predictors of the bad smell between classes at the 95 

% confidence level (P < 0.05). That’s why, we 

calculate the threshold values only for these metrics. 

Analyst4j data set does not allow identifying the 

threshold values for it. 

 

4.2 Threshold Effects Analysis 

 

The threshold values are calculated with the help of 

Value of Acceptable Risk Level (VARL) using 

equation (1).Only above mention metrics are 

calculated with this formula. Table 3 shows the 

threshold values of selected metrics at different five 

risk levels (0.5, 0.55, 0.6, 0.65, 0.7) of two different 

versions of jfreechart. 

 

 

 VARL= p ֿ ¹ ﴾po  (= 1/β ﴾ log (po/1-po) –α )                      

                                                 Equation (1)                             
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Table 3. VARL Threshold Values 

 

 

 
Table 4. VARL Threshold Values 

The Threshold values of selected metrics are given 

with the VARL formula, in which α and β are the 

coefficient estimates  

 

and the probability po is suggested with different 

five risk levels i.e. ( po = 0.5 to po = 0.7). Table 3 

and Table 4 represent the Threshold values with 

equation 1 based on bad smell at different five risk 

levels. Result shows some metrics have effective 

threshold values for the metrics. 

 

4.3 Assessing Threshold Effectiveness 

 

Accuracy of each software metrics was calculated 

with the help of confusion matrix at five risk 

levels. It is observed that some metrics gives the 

proper accuracy at five risk levels. Actually, it 

depends on the 

threshold 

values of 

selected 

software 

metrics. Both 

the versions of 

jfreechart 

packages gave 

the different 

accuracy at different risk levels. It is observed that 

highest accuracy is at po = 0.55 risk level which 

was above 70% at this risk levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5. Accuracy for jfreechart version 

 

 
METRICS 

 
Po=0.5 

 
Po = 0.55 

 
Po = 0.6 

 
Po = 0.65 

 
Po = 0.7 

 
LOC 

 

- 

 

77.3 

 

73.7 

 

69.5 

 

69.5 

 
WMC 

 

- 

 

77.3 

 

75.5 

 

69.5 

 

69.5 

 
RFC 

 

- 

 

77.7 

 

76.1 

 

69.5 

 

69.5 

 
DIT 

 

75.3 

 

75.3 

 

75.3 

 

69.5 

 

69.5 

 
CBO 

 

78.5 

 

77.3 

 

76.7 

 

75.1 

 

74.1 

 

 

 

 

METRIC β α 

VARL VARL VARL VARL VARL 

(po =0.50) (po =0.55) (po =0.60) (po =0.65) (po=0.70) 

LOC 0.009 -0.003 0 23 45 69 94 

WMC 0.034 0.246 -7 -1 5 11 18 

RFC 0.025 0.036 -1 7 15 23 32 

DIT 1.128 -0.696 1 1 1 1 1 

CBO 0.249 -0.733 3 4 5 5 6 

 
METRIC β α 

VARL VARL VARL VARL VARL 

(po =0.50) (po =0.55) (po =0.60) (po =0.65) (po=0.70) 

LOC 0.008 -0.025 3 28 54 81 109 

WMC 0.047 0.177 -4 1 5 9 14 

RFC 0.027 0.018 -1 7 14 22 31 

DIT 0.72 -0.153 0 0 1 1 1 

CBO 0.208 -0.669 3 4 5 6 7 
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Table 6.  Accuracy for jfreechart version (1.0.0 to 1.0.1) 

 
 

METRICS 
 

Po=0.5 

 
Po = 0.55 

 
Po = 0.6 

 
Po = 0.65 

 
Po = 0.7 

 
LOC 

 

- 

 

75.6 

 

68.5 

 

67.9 

 

67.9 

 
WMC 

 

- 

 

77.7 

 

72.3 

 

67.9 

 

67.9 

 
RFC 

 

- 

 

77.3 

 

74.4 

 

67.9 

 

67.9 

 
DIT 

 

75.4 

 

75.4 

 

75.4 

 

67.9 

 

67.9 

 
CBO 

 

80 

 

79.6 

 

77.5 

 

75.8 

 

74.8 

 

 
Table 7. Accuracy for jfreechart package 

 

S.No. Metrics P0 = 0.55 VARL Threshold values 

 

1. 

 

LOC 

 

75.6 

 

28 

 

2. 

 

WMC 

 

77.7 

 

1 

 

3. 

 

RFC 

 

77.3 

 

7 

 

4. 

 

DIT 

 

75.4 

 

1 

 

5. 

 

CBO 

 

79.6 

 

4 

 

 

 

 

The confusion matrix can be used to select the 

best results among the different risk levels. The 

Thresholds for po = 0.55 shows the best accuracy 

values. Therefore, we consider the threshold 

values for po = 0.55 as the most effective. These 

threshold values are LOC = 28, WMC= 1, RFC = 

7, DIT = 0 and CBO = 4. The LOC, WMC, RFC 

and CBO metrics shows the best among the five 

metrics. Only DIT metrics gives the less accuracy 

as compared to other selected metrics. However, 

each of these metrics serves a different purpose 

for both developers and testers of a software 

system. The CBO metric can be used to identify 

the classes that are excessively coupled to other 

classes, and the RFC metric can be used to 

identify the classes that have large responsibilities, 

whereas the WMC metric can be used to identify 

the classes that have excessive complexity. In 

general, a class with significantly more methods 

than its peers is more complex, tends to be more 

application-specific, and often hosts a greater 

number of bad smells present in the class. 

 

To get insight into the accuracy of two version of 

jfreechart package. Accuracy of two versions was 

calculated and it is observed that some metrics 

gives the highest accuracy at different risk levels. 

Then, apply one version to another version to 

predict the accuracy of each software metrics and 

after comparing the result, it is observed that 

accuracy after applying one version to another 

version also gave highest accuracy at the same 

risk level which is more than 70%. Therefore, the 

prediction accuracy can be improved if these 

thresholds are applied of one version to another 

version. 

 

Accuracy Evaluation 

 

We need to check the accuracy or effectiveness of 

the above selected metrics values. Accuracy of 

each software metrics was calculated with the help 

of confusion matrix at five risk levels of two 

versions of jfreechart. It is observed that some 

metrics gives the proper accuracy at five risk 

levels. Actually, it depends on the threshold values 

of selected software metrics. Both the versions of 

jfreechart packages give the different accuracy at 

different risk levels. The confusion matrix can be 

used to select the best results among the five risk 
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levels. This matrix can be used to calculate the 

percentage of each selected metrics and also the 

confusion matrix gave the observed and predicted 

values through which it is easy to calculate the 

accuracy. The percentage accuracy can be 

calculated at each five different risk levels. It is 

observed that accuracy can be calculated only at 

some risk levels of selected software metrics. It 

can be observed from the figure 6.1 that only CBO 

and DIT metrics are calculated at all five different 

risk levels whereas WMC,LOC and RFC metrics 

can’t gave any accuracy at level po=0.5 but these 

metrics gave good accuracy at other four risk 

levels. The accuracy values of version (1.0.1) of 

selected metrics are summarized in Fig.6.1. It was 

observed that accuracy of this jfreechart version of 

selected threshold metrics gave good result and 

also highest accuracy at the po = 0.55 level that 

are more than 70% for all the selected metrics. 

Some metrics did not give accurate value at 

particular risk levels. But on the other hand, 

selected metrics gave the highest accuracy at five 

risk levels. 

 

Accuracy Evaluation for other version 

 

The accuracy values of version (1.0.0) of selected 

metrics are summarized in Fig.    It was observed 

that accuracy of this jfreechart version of selected 

threshold metrics gave good result and also 

highest accuracy at the po = 0.55 level that are 

more than 70% for all the selected metrics. Some 

metrics did not give accurate value at particular 

risk levels. But on the other hand, selected metrics 

gave the highest accuracy at five risk levels. 
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Figure 1. The Accuracy for jfreechart version 1.0.0 at different risk levels for metrics (a) LOC (b) WMC (c) ROC and (d) DIT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accuracy for jfreechart 1.0.0 for DIT Metric at different risk levels 
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  Figure 2. The Accuracy for jfreechart version 1.0.0 to 1.0.1 at different risk levels for metrics (a) LOC (b) WMC (c)    

  ROC (d) DIT

 

Accuracy on other releases of jfreechart 

 

As our goal is to predict bad smell in the 

successive releases of the system, one version is 

applied on other version to predict the bad smell 

and compare the accuracy of both the versions. It 

is observed that accuracy gave satisfactory result. 

In this study, accuracy of both the versions give 

more than 70% results and it was also observed 

that when one version applied on the other version 

then also, accuracy more than 70% at po = 0.55 for 

the selected metrics: LOC, WMC, RFC, CBO and 

DIT 

 

 

 

 

 

 

Accuracy for jfreechart version 1.0.0 to 1.0.1 for RFC Metric at 
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CONCLUSION AND FUTURE WORK 

 
Object-Oriented metrics are more beneficial for 

the software engineers. Threshold values also 

provide the meaning to the OO metrics and to 

identify the various classes at risk. In this work, 

we find the threshold values of Object-Oriented 

metrics based on bad smell by using Logistic 

Regression model. It was concluded that these 

threshold values also  

helps to improve the software quality because 

classes having more than threshold values will 

increase the testing efficiency. It was observed 

that accuracy of jfreechart version of selected 

threshold metrics gave good result and also 

highest accuracy at the po = 0.55 level that are 

more than 70% for all the selected metrics: LOC, 

WMC, RFC, CBO and DIT.  We found that there 

are effective threshold values for the selected 

metrics. At different risk level, we found different 

effects for the given metrics.  
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